Surface Models (TINs)

GIS 270

What is a TIN?
- Triangulated Irregular Network
- Surface Model
- Vector version of an elevation model

DEM vs. TIN

Main TIN components
- Mass points (nodes)
 - Triangle corners with elevation data
- Edges (arcs)
 - Represent slope breaks across triangles
- Facet (polygon)
 - One triangle with constant slope and aspect
 - Represents one facet of the entire surface

How TINs are created
- ArcGIS uses Delaunay Triangulation
- Matches (from the mass points) the three nearest neighbors
- Wants to form triangles as close to equilateral as possible
- No control over the process of triangulation
 - Only control is from input data (mass points, breaklines, and polygons)

TIN considerations
- Beware of flat triangles, particularly if the mass points come from contour lines
Data for building a TIN

- Mass points: containing height data (X, Y, and Z)
 - Topo map
 - DEM
 - Another TIN
 - Contours
- Break Lines: define required edges where the slope must change along facets
 - E.g. Streams, Ridgelines

Breaklines

- Hard Breaklines: major disruption where triangulated surface not valid
 - Streams
 - Shorelines
 - Ridgelines
 - Dams
- Soft Breaklines: ensure a particular location is included
 - Highway cuts
 - Boundaries
 - Railroad beds

Breaklines

- Hard lines: cannot be cut across, edge must be followed
- Soft lines: can be cut across by triangles, but a general guideline

Why use Breaklines?

- Enforce surface reality
- Keep important surface features in model
- Can have different elevations along the line or same elevation

Polygons in TINs

- Replace polygons
 - Represent level areas
 - Interior lakes
- Clip polygons
 - Define edges of the TIN
- Erase polygons
 - Remove areas from inside the TIN
- Value Fill Polygons
 - Like a replace polygon, with a constant value

Why use TINs?

- Higher precision depending on mass points chosen
- Calculations
 - Surface area
 - Volume
- Disadvantages
 - Time-consuming
 - Expensive
Topology and TINs

- Tins have complete topology
 - Triangle numbers
 - Three neighboring triangle numbers
 - Three nodes and their values
 - Edge types